ידע, הבנה, יישום שעות 1. מבוא

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ידע, הבנה, יישום שעות 1. מבוא"

Transcript

1 רמה נדרשת ידע ידע היקף הקורס: שעות. מספר שעות 4 14 שם הקורס: הנדסה ביוטכנולוגית דרכי הוראה: הרצאה נושאי לימוד: נושא הלימוד 1 מבוא 2 חוקי יסוד חישובים ויחידות 3 חיקטים ומקומם בתהליך הייצור הביוטכנולוגי 4 הרכב מצעי גידול וייצור 5 קינטיקה של גידול חיקטים כראקצית קצב אוטוקטליטית עם משוב חיובי מודלים קינטיים 7 קינטיקה של ייצור מוצרי חיקטים מערכת הייצור עיקור,סילוק ו/או השמדת מזהמים 9 תהליכים אירוביים- דרישה לחמצן מומס והספקתו 10 ייצור חום כפונקציה של נשימה 11 חישובי ניצולת מקסימלית של חיקטים אירוביים אנרגית תחזוקה 13 תהליכי ייצור רציפים 14 On Line אמצעי בקרה עיקריים וחישנים 15 סה"כ שעות פרשיות הלימוד (לפרוט ראה פרק נספח) 1. מבוא שימושיה וחשיבותה של ההנדסה הכימית והביוכימית בתעשיה הכימית והביוטכנולוגית. התעשיה הביוטכנולוגית בישראל ובעולם. 2. חוקי יסוד, חישובים ויחידות

2 מערכות יחידות- מסות, צפיפות, לחצים, טמפרטורה, היפוך יחידות ושימוש בטבלאות נתונים. חישובי ריכוז למינהם. חישובי ניצולת וביטויו כמיקטע ביחסים משקליים ובאחוזים. קצב ייצור- פונקציה של זמן (נפחי, סגולי, כללי). סימונים גרפיים אוניברסליים. 3. חיקטים ומקומם בתהליך היצור הביוטכנולוגי א. השימוש בחייקטים כזרזים בתהליכי יצור, הרכב מקרו(חלבון, שומן וחומצות גרעין) של קבוצות חיקטים עיקריות (חיידקים, שמרים, פיטריות), פוטנציאל יצרני-שווקי של קבוצות חיקטים, צורות גידול שלהם. ב. שיטות לקביעת ריכוז חיקטים שיטות ישירות- (צפיפות אופטית, קלורימטריה) תחום מדידה, ספירה ישירה, מיהול וזריעה, נפח תאים ארוזים, צביעה דיפרנציאלית. שיטות עקיפות ניצול סובסטרטים כגון: מקורות פחמן, חנקן וצריכת חמצן. ייצור מטבולים הקשורים ישירות לגידול. ייצור חום מטבולי כתלות בצריכת חמצן בתהליכים אירוביים. הרכב מצעי גידול ויצור- א. פורמולציה של מצעים מקור אנרגיה, מקור חמצן, מקור פחמן, מקור חנקן אורגני ואי-אורגני, מינרלים ויסודות קורט, ויטמינים, פרקורסורים, אינדיוסרים.., שמירת.pH ב. חומרי גלם נפוצים בתעשיה הביוטכנולוגית- מקורות פחמן ואנרגיה, ספקי קרבוהידרטים והרכבם, ספקי שמנים, ספקי כהלים ופרקציות מתעשית הנפט. מקורות חמצן- אוויר, חמצן טהור, ניטריטים, סולפטים. מקורות חנקן, קופקטורים, ויטמינים ומינרלים- אמוניה, מלחי אמוניום, פפטונים,.. מלחים מינרליים- פוספטים, סולפטים, מגנזיום.. בסיסים, חומצות, ומלחים קשי תמס המשמשים לטיטרציה..4 קינטיקה של גידול חיקטים כראקצית קצב אוטוקטליטית עם משוב חיובי תנאים הכרחיים (מזרע חי, מקור אנרגיה, חומרים הנחוצים לסינטזה..) הגדרת קצב גידול סגולי μμ כמקדם הפונקציה בין קצב גידול d(n)/dt)) ( וריכוז (X או ). N עקום תאורטי של גידול מנתי ודיון בשלביו, פאזה סטציונרית, קצב צריכה סגולי של חומרי גלם ) q) s = ds/dt/x והיחס בינו לביןμμ וניצולת Y בשלב הגידול האקספוננציאלי,μμ הצגה גרפית, עקום גידול ומשמעותו, קינטיקה של גידול במצע מינימלי ובמצע מורכב..5 א. ב. ג. מודלים קינטיים א. חלק זה נלמד בביוכימיה- לא ילמד במסגרת קורס זה אולם נידרשת ידיעת החומר מיכאליס ומנטן.

3 תלות קצב יצור המוצר ושיחזור האנזים. קבוע האפיניות משמעות קבועים. - Km משמעותו התאורטית והמעשית. Vmax ותנאים המאפשרים להתקרב לערכי ערכים מעשיים וערכים כקינטיקה של רוויה. ב. זאקו ומונרו- מחושבים תאורטיים.. Vmax תנאי התגובה, הכרח לקיום תנאים הצגה גרפית של המודל של מיכאליס ומנטן דיון בקינטיקה של גידול חיקטים וניצול סובסטרט, השוואה לקינטיקת מיכאליס מנטן. דיון בסיבות ביולוגיות ביוכימיות המאפשרות זהות בהתנהגות הקינטית. קינטיקה של ייצור מוצרי חיקטים מוצרים ראשוניים, שניוניים ומעורבים. א. השוואת הקינטיקה של הצטברות המוצרים כפונקציה של קינטיקת הגידול במהלך היצור ) ב. השוואה גרפית של קצב ייצור סגולי q p כפונקציה של קצב גידול סגולי ושל זמן יצור. הסיבות האפשריות של מוצרים שיניוניים, תחרות על סובסטרטים בטבע ובריאקטור עם תרבית ג. של זן יחיד. קצב ייצור נפחי וחשיבותו התפעוןלית- ההנדסית, תפוקת התהליך וקצב הדרישה לחומרי גלם. ד. הצגה גרפית של חישובי קצב ייצור נפחי מקינטיקת תהליך הייצור כולו- קצב מקסימלי וכללי. ה. קצב הייצור הסגולי וחשיבותו בתיכנון תהליכי הפרדת המוצר. ו..7 מערכת הייצור א. אגף היצור במפעל ויחסי הגומלין בין יחידות התפעול השונות : ביו ראקטור, עיקור הכנת מזרע, טיפול בחומרי גלם, הפרדה וניקוי, טיהור שפכים, בקרת איכות, אריזה. ב. ביוראקטורים: סוגי ביוראקטורים לפי אופי התהליך- תסיסות עומק ושטח, יצור במצע נוזלי, מוצק ומרחף. ראקטורים לעבודה אנארובית ושיטות לסילוק חמצן. הומוגני בחוש, סווג בהתאם לעקרונות התפעול, ביוראקטורים לתסיסות עומק. ראקטור צינור, מעלית אוויר, סילון אוויר. סכימת ביוראקטורים על חלקיהם השונים ושיטות לעבודה איתם. תרביות מזרע- שימור זנים בצורה יבשה, בהקפאה, בגליצרול, במצעים מוצקים. ג. בדיקות בקבוקי טלטול,פרמנטורים. מבחנות, שלבי פיתוח מזרע מתרבית שימור דרך צלחות אגר, תקופתיות לבקרת זיהום ובדיקת פוטנציאל היצרני.. 9. עיקור סילוק ו/או השמדת מזהמים

4 א. ב. ג. ד. חיוניות העיקור מבחינת תהליך הייצור, צריכה וניצול חומרי הגלם. הדרישות מהמוצר, ההשפעה על תהליכי ההפרדה והניקוי. הבדלים בין השמדה וסילוק מזהמים, בין עיקור במעבדה ובתעשיה. שיטות לסילוק והשמדה של מזהמים. השמדה בחום- מושגים בסיסיים, רמת סטריליות, עמידות לחום, דוגמאות למזהמים פוטנציאליים בתעשיות השונות. הצגה גרפית N/No כנגד זמן עיקור בטמפ' שונות עבור תאים וגטטיביים ועבור ספורות וההבדל בינהם. קינטיקה של השמדה בטמפ' נתונה, lnn = lnno = Kt הגדרת מקדם קצב תמותה כפונקציה של טמפ'. מקדם קצב האינאקטיבציה שמתיחסת להרס הפעילות של חומרי מצע וירידה בריכוז הפעילות בתהליך העיקור. השתנות K כפונקציה של טמפ'. משוואת ארניוס. הצגה ותאור הטכנולוגיה של עיקור בטמפ' גבוהה לזמן קצר. דיון בבסיס התרמודינמי: K של ספורות בעלות אנרגית אקטיבציה גבוהה, רגישות גבוה יותר מ- Ki של ויטמין שהוא בעל אנרגית אקטיבציה נמוכה. א. ג, ד. ה. ו. ז. 10. תהליכים ארוביים דרישה לחמצן מומס והספקתו- גידול ארובי ואנארובי גבוהים. ) מושגים כמו- אובליגטורי ופקולטטיבי בהקשר זה. ב. דיון והצגה גרפית של היחס בין קצב הגידול הסגולי וריכוז חמצן מומס לגבי חיקטים גידול חיקטים ארוביים כראקצית בעירה, חימצון מטבוליות ליצור מוצרים מחומצנים. הצורך בחמצן לסינטזת חומרי התא, תופעות רעילות בריכוזי חמצן ליצירת אנרגיה, לראקציות קצב "נשימה" סגולי כפונקציה של הדרישה הסגולית וקצב הגידול הסגולי. ) 1- h) QO 2 g= O 2 /gcells.u ריכוז חמצן קריטיוהשפעתו על Ys,u, Q O 2 כולל הצגה גרפית. ההבדל בין ריכוז קריטי וקבוע רוויה לחמצן. קצב דרישה נפחי לחמצן מומס כפונקציה של QO 2 וריכוז חיקטים. האידאליים ושימוש מעשי. חוק הנרי למסיסות גזים והשפעת הטמפ' קצב איוורור ניפחי, והלחץ החלקי בפאזה גזית חוקי הגזים (Pg) על מסיסות בנוזל ) l.(c התלות של Pg בלחץ הכללי Pt ובאחוז החמצן בגז. Pg= Pt. % O 2 התמוססות חמצן- תאורית הפילם הכפול, המחסום למעבר מסה של חמצן מבועות הגז לנוזל המצע ולתאים. שיטות להספקת חמצן (אויר, חמצן טהור) העברת גז דחוס דרך נוזל בעל פתח יחיד ופתחים מרובים, השימוש בגוף פורוסיבי. יניקה (ללא מפלי לחץ). עיקור גזים בסינון ובאמצעות משרפות. קצב מעבר מסה של חמצן, ברכיבי חוק הנרי, דיון בפרמטרים המשפיעים על תלות קצב ההתמוססות במקדם המוליכות ומפל הפוטנציאלים, K L a מונעי קצף, צמיגות, צפיפות הגידול, צורת הגידול, חומרי מצע וריכוז מלחים. תלות הריכוזים קצב עירבול,RPm השקעת כוח, מהירות איורור, צורות של בוחשים ומערבלים (ימי וטורבינה). RPm והשפעתו על שטח המעבר a הצגה גרפית.

5 שימוש בסרגלי בחישה. תיכנון מערכות הספקת חמצן. ייצור חום כפונקציה של נשימה ייצור חום כמוצר לואי אוניברסלי לגידול.תכולת חום, גידול חיקטים כראקצית מעבר מתכולת חום גבוהה לנמוכה. חישובי קצב יצור חום בתהליכי גידול אירוביים. מאזני חום בתהליכי גידול וייצור( חום תסיסה שנוצר,Qf חום מכני שנוצר (.Qex, Qacc. Qag מאזן חום..11 חישובי ניצולת מקסימלית של חיקטים ארוביים שיקולים תרמודינמיים, העברת אנרגיה, חימצון מוחלט של סובסטרט, חישובי כמות חמצן, חישובי כמות התאים. 13 אנרגית תחזוקה ניצול מקור האנרגיה שלא למטרות גידול ויצור נטו של מסת תאים. פונקציות מטבוליות, עבודה אוסמוטית, ניטרול טוקסינים,.. ניצולת מקסימלית הצגה גרפית וכו'. 14 תהליכי יצור רציפים תרשים זרימה של מערכת רציפה חד- שלבית. מערכות הומוגניות בחושות. מערכות לא הומוגניות בזרימה לאמינרית, כימוסטט, מאזני מסה. דיון במיגבלות של תהליכים רציפים. היתרונות של תהליך עם החזר תאים לייצור מסת תאים.. 15 אמצעי בקרה עיקריים וחישנים On Line דיון בחשיבות פיתוח אמצעי החישה והבקרה להתפתחות התעשיה הביוטכנולוגית. פרמטרים פיסיקליים, הצגה גרפית של מערכת היצור ומיקום אמצעי החישה, פירוט פעולות של מערכות הבקרה העיקריות, בקרת קצף, שיטות לקביעת עכירות, קביעת חמצן, קביעת.CO 2 On Line מעבדה בהנדסה ביוטכנולוגית היקף המעבדה: 32 שעות מטרות הקורס: תרגול מעשי וישומי, ברוח של מערכות מודל, של מגוון טכנולוגיות מתקדמות וקלאסיות המשרתות את התעשיות הביוטכנולוגית, סביבתית, מזון, ופרמצפטית. הקורס יושם במעבדות נפרדות ויכלול לפחות תרגול אחד של חיבור של שיטות שונות כמודל של תהליך יצור.

6 יש להתרכז בנושאים הנדסאים וטכנולוגיים לדוגמא נסיונות הנדסיים בתהליכים לייצור אירובי של מסת תאים (לדוגמא שמרי אפיה), ביצוע הניסיונות בריאקטורים בחושים, רצוי גם ריאקטורים מסוג צינור ומסוג מעלית אוויר. ניתוח תוצאות והצגה ממוחשבת וגרפית. * המוסד יקבע סדר עדיפות הנושאים. נושאים מוצעים א. הכנת מערכת הייצור- פורמולצית מצעים והכנתם, הכנת הראקטור ותפעולו כולל- מערכת הספקת חמצן, הספקת חום והרחקתו, מערכת להוספת חומרי מצע במשך התהליך, חיישנים, בקרים.. ב. ניסיונות לקביעת K L a כפונקציה של RPm לפני זריעת הריאקטורים. ג. זריעת מערכות, קביעת נתונים של ייצור מנתי וייצור מנתי- מוזן. מעקב קינטי להופעת תוצר וצריכת סובסטרט, ניצולת.. הכרת המבנה התפעולי של מערכות הבקרה ) ph, טמפ', לחץ, חמצן מומס, עירבול, איוורור, קצף). קביעת קצב צריכת חמצן מדידות ובקרה. ד. מעבר להפעלת תסיסה רציפה בקצב מהול, שיטות לקביעת קצב הזנה.. נושאים נוספים אפשריים הכנת ציוד, מצע ותאים לפרמנטציה סטרילית. תהליך פרמנטציה מבוקר ליצור אנזים, הפקת המוצר, וקביעת יעילות התהליך תהליך איזומריזציה של גלוקוז לפרוקטוז באמצעות אנזים מקובע (גלוקוז איזומורז). טיהור מי-שפכים על ידי מיקרואורגניזמים גידול תאים יונקים בתרחיף בריאקטור תהליכים לניצול מי-גבינה קבוע תאים: חיידק, פטריה או שמר קבוע אנזים והשבעת פעילותו למצב חפשי

מספר שעות ידע המים לקיום החים. סה"כ I חלבונים

מספר שעות ידע המים לקיום החים. סהכ I חלבונים שם הקורס: ביוכימיה: סוכרים, חלבונים ומטבוליזים דרכי הוראה: הרצאה נושאי לימוד: היקף הקורס: נשא הלימוד רמה נדרשת מספר עקרונות הביוכימיה. תפקיד המים לקיום החים. חומצות האמיניות,, י פפטידים,, י חלבונים,, י

Διαβάστε περισσότερα

חורף תש''ע פתרון בחינה סופית מועד א'

חורף תש''ע פתרון בחינה סופית מועד א' מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר

Διαβάστε περισσότερα

ביוכימיה של התא תרגיל מס' 3: קינטיקה אנזימתית

ביוכימיה של התא תרגיל מס' 3: קינטיקה אנזימתית ביוכימיה של התא 72120 תרגיל מס' 3: קינטיקה אנזימתית 1 ריאקציות אנזימתיות פרמטרים להסתכלות על ריאקציות: תרמודינמיים קינטיים אנרגיה חופשית של גיבס- תלויה באופי החומר וסביבתו, סוג הקשרים הכימיים ומספרם. -G

Διαβάστε περισσότερα

3-9 - a < x < a, a < x < a

3-9 - a < x < a, a < x < a 1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.

Διαβάστε περισσότερα

קבוע הגזים: משוואת המצב של גז אידיאלי: חוק זה מסכם 3 חוקים פשוטים יותר: חוק :Boyle עבור תהליך איזותרמי )T=const( אין שינוי של קבוע בולצמן:

קבוע הגזים: משוואת המצב של גז אידיאלי: חוק זה מסכם 3 חוקים פשוטים יותר: חוק :Boyle עבור תהליך איזותרמי )T=const( אין שינוי של קבוע בולצמן: כימיה פיסיקלית ב )054( חורף תשע"ב קבוע הגזים: קבועים והמרות גז אידיאלי nr L 000 Lt J a ol K ol K ol K R 0.08 8.45 8.45 cal LHg Lorr ol K K ole K ole.987 6.67 6.67 c קבוע בולצמן: R N k k.8 0 B B J K מספר

Διαβάστε περισσότερα

סיכום- בעיות מינימוםמקסימום - שאלון 806

סיכום- בעיות מינימוםמקסימום - שאלון 806 סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,

Διαβάστε περισσότερα

ריאקציות כימיות

ריאקציות כימיות ריאקציות כימיות 1.5.15 1 הקדמה ריאקציה כימית היא תהליך שבו מולקולות (הנקראות מגיבים עוברות שינוי ויוצרות מולקולות אחרות (הנקראות תוצרים. הריאקציה יכולה להתרחש בשני הכיוונים. לפני ההגעה לשיווי משקל יהיה

Διαβάστε περισσότερα

כימיה פיסיקלית כימיה פיסיקלית סילבוס קורס

כימיה פיסיקלית כימיה פיסיקלית סילבוס קורס כימיה פיסיקלית - 69167 דני פורת ד"ר Tel: 02-6586948 e-mail: porath@chem.ch.huji.ac.il Office: Los Angeles 027 Course book: Physical Chemistry P. Atkins & J. de Paula (7 th ed) Course site: http://chem.ch.huji.ac.il/surface-asscher/elad/daniclass.html

Διαβάστε περισσότερα

פרשיות הלימודים כימיה כללית ואנליטית

פרשיות הלימודים כימיה כללית ואנליטית 01414 כימיה כללית ואנליטית 3.3 - - 1 3 מושגי יסוד - חומר, יסוד, תרכובת, חומר טהור, תערובות, שינויים כימיים ופיזיקליים. מצבי הצבירה. יחידות מדידה. צפיפות. חוקי יסוד: חוק שמור החומר והאנרגיה, חוק ההרכב הקבוע,

Διαβάστε περισσότερα

אחד הפרמטרים המרכזיים בחישובי פיזור מזהמים הוא גובה השחרור האפקטיבי של המזהמים.H e

אחד הפרמטרים המרכזיים בחישובי פיזור מזהמים הוא גובה השחרור האפקטיבי של המזהמים.H e H e תמרה והגובה האפקטיבי עילוי אחד הפרמטרים המרכזיים בחישובי פיזור מזהמים הוא גובה השחרור האפקטיבי של המזהמים.H e גובה השחרור האפקטיבי מוגדר כסכום בין גובהה הפיסי של הארובה ) s H) ועילוי התמרה (H ). H

Διαβάστε περισσότερα

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות

Διαβάστε περισσότερα

ערה: הגזירה היא חלקית, כלומר גוזרים את התלות המפורשת של G ב ξ בלבד, ולא נהוג לסמן את קצב השינוי באנרגיה החופשית של גיבס בתגובה כך: G

ערה: הגזירה היא חלקית, כלומר גוזרים את התלות המפורשת של G ב ξ בלבד, ולא נהוג לסמן את קצב השינוי באנרגיה החופשית של גיבס בתגובה כך: G ה) יווי משקל ש תרגול כימי מידת התקדמות תגובה ; קצב שינוי באנרגיה החופשית של גיבס בתגובה ; קבוע ש"מ ;מנת ריאקציה אנרגיה חופשית של גיבס לערבוב ; עקרון לה שטלייה ; משוואת גיבס-הלמהולץ G G nrt ln n nrt lna,

Διαβάστε περισσότερα

תשובות לשאלות בפרק ד

תשובות לשאלות בפרק ד תשובות לשאלות בפרק ד עמוד 91: ( היבט מיקרוסקופי ) בהתחלה היו בכלי מולקולות של מגיבים בלבד, אשר התנגשו וכך נוצרו מולקולות מסוג חדש, מולקולות תוצר. קיום של מולקולות תוצר מאפשר התרחשות של תגובה הפוכה, בה

Διαβάστε περισσότερα

שאלה 1 V AB פתרון AB 30 R3 20 R

שאלה 1 V AB פתרון AB 30 R3 20 R תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A

Διαβάστε περισσότερα

הרצאה 7: CTMC הסתברויות גבוליות, הפיכות בזמן, תהליכי לידה ומוות

הרצאה 7: CTMC הסתברויות גבוליות, הפיכות בזמן, תהליכי לידה ומוות הרצאה 7: CTMC הסתברויות גבוליות, הפיכות בזמן, תהליכי לידה ומוות משואות קולמוגורוב pi, j ( t + ) = pi, j ( t)( rj ) + pi, k ( t) rk, j k j pi, j ( + t) = ( ri ) pi, j ( t) + ri, k pk, j ( t) k j P ( t)

Διαβάστε περισσότερα

ההוצאה תהיה: RTS = ( L B, K B ( L A, K A TC C A L K K 15.03

ההוצאה תהיה: RTS = ( L B, K B ( L A, K A TC C A L K K 15.03 15.01 o פונקצית הוצאות של הטווח ה ארוך על מנת למקס ם רו וחי ם על פירמה לייצר תפו קה נתונה במינימום הוצא ות. נניח שמחירי גורמי הייצור קבועים. נגדיר עק ומת שוות הוצאה: כל הק ומבינציות של ו- שעבורן רמת ההוצאת

Διαβάστε περισσότερα

(ספר לימוד שאלון )

(ספר לימוד שאלון ) - 40700 - פתרון מבחן מס' 7 (ספר לימוד שאלון 035804) 09-05-2017 _ ' i d _ i ' d 20 _ i _ i /: ' רדיוס המעגל הגדול: רדיוס המעגל הקטן:, לכן שטח העיגול הגדול: / d, לכן שטח העיגול הקטן: ' d 20 4 D 80 Dd 4 /:

Διαβάστε περισσότερα

ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים (

ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים ( תכנון ניסויים כאשר קיימת אישביעות רצון מהמצב הקיים (למשל כשלים חוזרים בבקרת תהליכים סטטיסטית) נחפש דרכים לשיפור/ייעול המערכת. ניתן לבצע ניסויים על גורם בודד, שני גורמים או יותר. ניסויים עם גורם בודד: נבצע

Διαβάστε περισσότερα

דיאגמת פאזת ברזל פחמן

דיאגמת פאזת ברזל פחמן דיאגמת פאזת ברזל פחמן הריכוז האוטקטי הריכוז האוטקטוידי גבול המסיסות של פריט היווצרות פרליט מיקרו-מבנה של החומר בפלדה היפר-אוטקטואידית והיפו-אוטקטוידית. ככל שמתקרבים יותר לריכוז האוטקטואידי, מקבלים מבנה

Διαβάστε περισσότερα

(להנדסאי מכונות) הוראות לנבחן פרק שני: בקרת תהליכים ומכשור לבקרה ולאלקטרוניקה תעשייתית 80 נקודות

(להנדסאי מכונות) הוראות לנבחן פרק שני: בקרת תהליכים ומכשור לבקרה ולאלקטרוניקה תעשייתית 80 נקודות גמר לבתי ספר לטכנאים ולהנדסאים סוג הבחינה: מדינת ישראל אביב תשס"ח, 2008 מועד הבחינה: משרד החינוך 710923 סמל השאלון: מערכות מכטרוניות ה' (להנדסאי מכונות) הוראות לנבחן א. משך הבחינה: ארבע שעות. ב. מבנה השאלון

Διαβάστε περισσότερα

= k. 4πε. t nqav. VIt P. out

= k. 4πε. t nqav. VIt P. out לקראתבחינותמתכונתובגרות אלקטרומגנטיות ).5 מתוך 5 להלן פרוט הנושאים הנכללים בתוכנית הלימודים של פרק אלקטרומגנטיות. בכל נושא ריכזתי את תופעות, מושגים וחוקים שנלמדו במסגרת הפרק. ספרי לימוד אתרי אינטרנט פרידמן

Διαβάστε περισσότερα

ב ה צ ל ח ה! /המשך מעבר לדף/

ב ה צ ל ח ה! /המשך מעבר לדף/ בגרות לבתי ספר על יסודיים סוג הבחינה: מדינת ישראל קיץ תשע"א, מועד ב מועד הבחינה: משרד החינוך 035804 מספר השאלון: דפי נוסחאות ל 4 יחידות לימוד נספח: מתמטיקה 4 יחידות לימוד שאלון ראשון תכנית ניסוי )שאלון

Διαβάστε περισσότερα

1. תרמודינמיקה 2. קינטיקה ג- החוק השני והשלישי: מושגים ומנגנונים ב- פיצוצים ב- פולימריזצית שרשרת ב- אנזימים

1. תרמודינמיקה 2. קינטיקה ג- החוק השני והשלישי: מושגים ומנגנונים ב- פיצוצים ב- פולימריזצית שרשרת ב- אנזימים קינטיקה של ריאקציות מורכבות כימיה פיסיקלית 6967-4 ד"ר דני פורת Tel: -6586948 e-mail: orah@chem.ch.huji.ac.il Rm: Los Angeles Course boo: Physical Chemisry P. Ains & J. de Paula (7 h ed) Course sie: h://chem.ch.huji.ac.il/surface-asscher/gabriel/hys_chem.hml

Διαβάστε περισσότερα

החוק השני של ניוטון מטרה: חקירת תנועה בהשפעת כוח תלות התאוצה במסה. א. תלות התאוצה בכוח. ב. בדיקת שימור אנרגיה במהלך התנועה. ג. משקולות, גלגלת וחוט.

החוק השני של ניוטון מטרה: חקירת תנועה בהשפעת כוח תלות התאוצה במסה. א. תלות התאוצה בכוח. ב. בדיקת שימור אנרגיה במהלך התנועה. ג. משקולות, גלגלת וחוט. החוק השני של ניוטון מטרה: חקירת תנועה בהשפעת כוח תלות התאוצה במסה. א. תלות התאוצה בכוח. ב. בדיקת שימור אנרגיה במהלך התנועה. ג. משקולות, גלגלת וחוט. ציוד: מסילת אויר, מחליק, סונר Sensor(,(Motion תי תיאור

Διαβάστε περισσότερα

:ילאידיא סחדמ רובע תוחנה

:ילאידיא סחדמ רובע תוחנה - - רקע תיאורטי הגדרה מדחס הנו מתקן המשמש להעלאת לחץ הגזים בתוכו. ישנם מספר סוגי מדחסים, אולם אנו נתייחס ל חד דרגתי. מבנה המדחס המדחס כולל את המרכיבים הבאים: צילינדר חלול () בוכנה () שסתום פליטה (3) שסתום

Διαβάστε περισσότερα

התהליכים. H 2(g) + Cl 2(g) 2HCl (g) 1) Cl 2(g) 2Cl. 2) Cl. + H 2(g) HCl (g) + H. 3) H. + Cl 2(g) HCl (g) + Cl. 4) H. + HCl (g) H 2(g) + Cl.

התהליכים. H 2(g) + Cl 2(g) 2HCl (g) 1) Cl 2(g) 2Cl. 2) Cl. + H 2(g) HCl (g) + H. 3) H. + Cl 2(g) HCl (g) + Cl. 4) H. + HCl (g) H 2(g) + Cl. סיכום הפרק קינטיקה כימית מהספר של מנזורולה עקרונות הכימיה חלק ב' הסיכום כולל שאלות פתורות סיכמה קשי עדנה תיכון היובל הרצליה קינטיקה כימית עוסקת בחקר מהירויות של תגובות כימיות ועוזרת בחקר המנגנונים של התהליכים.

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשעד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר

Διαβάστε περισσότερα

ךוניחה דרשמ לש " ה מיעפ םידומילה

ךוניחה דרשמ לש  ה מיעפ םידומילה פיזיקה תורת הזורמים תורת החום מותאם לתוכנית הלימודים פעימ"ה של משרד החינוך 1 3 4 7 9 12 17 22 25 26 29 32 36 41 43 45 48 55 63 66 69 77 87 95 100 תורת הזורמים מבוא תוכן עניינים תורת הזורמים הידרוסטטיקה...

Διαβάστε περισσότερα

תרגילים פרופ' עזרא בר-זיו המחלקה להנדסת מכונות (תשס"ד) שאלה 1 שאלה 2 נתון : Time (sec) Pressure, mm Hg (torr)

תרגילים פרופ' עזרא בר-זיו המחלקה להנדסת מכונות (תשסד) שאלה 1 שאלה 2 נתון : Time (sec) Pressure, mm Hg (torr) א( קורס יסודות תורת השריפה (6-1-441) פרופ' עזרא בר-זיו המחלקה להנדסת מכונות (תשס"ד) תרגילים גיליון מספר 1: תרגילים בקינטיקה כימית נתון : שאלה 1 PH מתפרק ב- 600 o (g) (g) C ל- PH ו- H. בזמן התפרקות נמדדו

Διαβάστε περισσότερα

תרגול למבחן בכימיה אנרגיה בקצב הכימיה פרקים א ו-ב

תרגול למבחן בכימיה אנרגיה בקצב הכימיה פרקים א ו-ב לפניכם שני תהליכים אנדותרמיים: תרגול למבחן בכימיה אנרגיה בקצב הכימיה פרקים א ו-ב A. H 2 0 (g) H 2(g) + 1/2 O 2(g).1 B. H 2 0 (g) 2H.(g) + O (g) כמות האנרגיה הנקלטת בתהליך A: גדולה מזו הנקלטת בתהליך B.

Διαβάστε περισσότερα

תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME

תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME הנדסת המישור - תרגילים הכנה לבגרות תרגילים הנדסת המישור - תרגילים הכנה לבגרות באמצעות Q תרגיל 1 מעגל העובר דרך הקודקודים ו- של המקבילית ו- חותך את האלכסונים שלה בנקודות (ראה ציור) מונחות על,,, הוכח כי

Διαβάστε περισσότερα

התפלגות χ: Analyze. Non parametric test

התפלגות χ: Analyze. Non parametric test מבחני חי בריבוע לבדיקת טיב התאמה דוגמא: זורקים קוביה 300 פעמים. להלן התוצאות שהתקבלו: 6 5 4 3 2 1 תוצאה 41 66 45 56 49 43 שכיחות 2 התפלגות χ: 0.15 התפלגות חי בריבוע עבור דרגות חופש שונות 0.12 0.09 0.06

Διαβάστε περισσότερα

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשעב זהויות טריגונומטריות תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si

Διαβάστε περισσότερα

תרגיל 13 משפטי רול ולגראנז הערות

תרגיל 13 משפטי רול ולגראנז הערות Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון

Διαβάστε περισσότερα

Domain Relational Calculus דוגמאות. {<bn> dn(<dn, bn> likes dn = Yossi )}

Domain Relational Calculus דוגמאות. {<bn> dn(<dn, bn> likes dn = Yossi )} כללים ליצירת נוסחאות DRC תחשיב רלציוני על תחומים Domain Relational Calculus DRC הואהצהרתי, כמוSQL : מבטאיםבורקמהרוציםשתהיההתוצאה, ולא איךלחשבאותה. כלשאילתהב- DRC היאמהצורה )} i,{ F(x 1,x

Διαβάστε περισσότερα

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת

Διαβάστε περισσότερα

1. תרמודינמיקה 2. קינטיקה ג- החוק השני והשלישי: מושגים ומנגנונים ג- ריאקציות חד-מולקולריות

1. תרמודינמיקה 2. קינטיקה ג- החוק השני והשלישי: מושגים ומנגנונים ג- ריאקציות חד-מולקולריות קצב ריאקציות כימיות כימיה פיסיקלית 6967-4 ד"ר דני פורת Tel: -6586948 e-mil: porth@chem.ch.huji.c.il Rm: Los Angeles 3 Course oo: Physicl Chemistry P. Atins & J. de Pul (7 th ed) Course site: http://chem.ch.huji.c.il/surfce-sscher/griel/phys_chem.html

Διαβάστε περισσότερα

Conductive FRP תכנון איל צדוק מהנדס מומחה לבקרת חשמל סטטי מנתח סיכונים של אוירה דליקה וציוד חשמלי. כל הזכויות שמורות

Conductive FRP תכנון איל צדוק מהנדס מומחה לבקרת חשמל סטטי מנתח סיכונים של אוירה דליקה וציוד חשמלי. כל הזכויות שמורות תכנון Conductive FRP אופטימלי ע ם ניטר ול חש מל סט טי איל צדוק מהנדס מומחה לבקרת חשמל סטטי מנתח סיכונים של אוירה דליקה וציוד חשמלי ת.ד. 108, הילה 24953, טל: 04-9572126, פקס: 04-9974585, eyalzad@netvision.net.il

Διαβάστε περισσότερα

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין

Διαβάστε περισσότερα

השפעת הטמפרטורה על ההתנגדות התנגדות המוליך

השפעת הטמפרטורה על ההתנגדות התנגדות המוליך בגרות לבתי ספר על יסודיים סוג הבחינה: מדינת ישראל קיץ תשע"ג, 013 מועד הבחינה: משרד החינוך נספח לשאלון: 84501 אין להעביר את הנוסחאון לנבחן אחר א. תורת החשמל נוסחאון במערכות חשמל )10 עמודים( )הגדלים בנוסחאון

Διαβάστε περισσότερα

ל הזכויות שמורות לדפנה וסטרייך

ל הזכויות שמורות לדפנה וסטרייך מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות

Διαβάστε περισσότερα

נוסחאות ונתונים בפיזיקה

נוסחאות ונתונים בפיזיקה נוסחאות ונתונים בפיזיקה קינמטיקה פוקוס בפיזיקה-מכניקה קיץ 0 v dx מהירות רגעית dt v dv dt תאוצה רגעית v v0 + at תנועה שוות-תאוצה x x vt 0+ 0 + at x x v0 v 0 + + t v v 0 + ax ^ - x0h מהירות של B ביחס ל-

Διαβάστε περισσότερα

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה

Διαβάστε περισσότερα

"קשר-חם" : לקידום שיפור וריענון החינוך המתמטי

קשר-חם : לקידום שיפור וריענון החינוך המתמטי הטכניון - מכון טכנולוגי לישראל המחלקה להוראת הטכנולוגיה והמדעים "קשר-חם" : לקידום שיפור וריענון החינוך המתמטי נושא: חקירת משוואות פרמטריות בעזרת גרפים הוכן ע"י: אביבה ברש. תקציר: בחומר מוצגת דרך לחקירת

Διαβάστε περισσότερα

Atomic Mass Unit (AMU) gr mole = N AMU

Atomic Mass Unit (AMU) gr mole = N AMU ה. מבוא להנדסת חומרים- פתרונות פרק (מורחב): קשרים בין אטומיים איזוטופים- אטומים של אותו יסוד, אשר הם בעלי מסות שונות.. מסות השונות נובעות ממספר שונה של נויטרונים בגרעין. היסוד נקבע עפ"י מספר הפרוטונים

Διαβάστε περισσότερα

מתמטיקה שאלון ו' נקודות. חשבון דיפרנציאלי ואינטגרלי, טריגונומטריה שימוש במחשבון גרפי או באפשרויות התכנות עלול לגרום לפסילת הבחינה.

מתמטיקה שאלון ו' נקודות. חשבון דיפרנציאלי ואינטגרלי, טריגונומטריה שימוש במחשבון גרפי או באפשרויות התכנות עלול לגרום לפסילת הבחינה. בגרות לבתי ספר על-יסודיים מועד הבחינה: תשס"ח, מספר השאלון: 05006 נספח:דפי נוסחאות ל- 4 ול- 5 יחידות לימוד מתמטיקה שאלון ו' הוראות לנבחן משך הבחינה: שעה ושלושה רבעים. מבנה השאלון ומפתח ההערכה: בשאלון זה

Διαβάστε περισσότερα

הפקולטה למדעי ההנדסה סקורטובסקי אילריון

הפקולטה למדעי ההנדסה סקורטובסקי אילריון אוניברסיטת בן-גוריון בנגב הפקולטה למדעי ההנדסה המחלקה להנדסת מכונות תהליכי מעבר חום וחומר בייבוש פנאומטי חיבור זה מהווה חלק מהדרישות לקבלת תואר מגיסטר בהנדסה מאת: סקורטובסקי אילריון דצמבר 2002 כסלו תשס"ג

Διαβάστε περισσότερα

TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים

TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים TECHNION Iael Intitute of Technology, Faculty of Mechanical Engineeing מבוא לבקרה (034040) גליון תרגילי בית מס 5 d e C() y P() - ציור : דיאגרמת הבלוקים? d(t) ו 0 (t) (t),c() 3 +,P() + ( )(+3) שאלה מס נתונה

Διαβάστε περισσότερα

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק יום א 14 : 00 15 : 00 בניין 605 חדר 103 http://u.cs.biu.ac.il/ brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק 29/11/2017 1 הגדרת קבוצת הנוסחאות הבנויות היטב באינדוקציה הגדרה : קבוצת הנוסחאות הבנויות

Διαβάστε περισσότερα

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 5 שנכתב על-ידי מאיר בכור. חקירת משוואה מהמעלה הראשונה עם נעלם אחד = הצורה הנורמלית של המשוואה, אליה יש להגיע, היא: b

Διαβάστε περισσότερα

תרגיל 7 פונקציות טריגונומטריות הערות

תרגיל 7 פונקציות טריגונומטריות הערות תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =

Διαβάστε περισσότερα

מעבדה בהנדסה גנטית חלק מעשי

מעבדה בהנדסה גנטית חלק מעשי כתבה: אלוירה בר מעבדה בהנדסה גנטית חלק מעשי ערכה: ד"ר דליה פפיר-קריכלי עזרה בהפקה: ענבר רכס כללי זהירות במעבדה לפני ביצוע כל סעיף, קרא היטב את ההוראות וודא שאתה יודע בדיוק את אשר יש לעשות. במידה ומתעוררות

Διαβάστε περισσότερα

1 חמד"ע / מתכונת כימיה השלמה ל- 5 יחידות תשס "ט פיתרון תשס"ט (50 נקודות) CH 4(g) + H 2 O (g) CO (g) + 3H 2(g) i מערכת? נמק

1 חמדע / מתכונת כימיה השלמה ל- 5 יחידות תשס ט פיתרון תשסט (50 נקודות) CH 4(g) + H 2 O (g) CO (g) + 3H 2(g) i מערכת? נמק ל 3 1 חמד"ע - מרכז לחינוך מדעי פיתרון ב ח י נ ה ב כ י מ י ה ב מ ת כ ו נ ת ב ג ר ו ת השלמה מ- - 5 יחידות לימוד תשס"ט - 2009 פרק ראשון - פרק חובה (50 נקודות) תרמודינמיקה ושיווי משקל חמצון-חיזור ענה על אחת

Διαβάστε περισσότερα

תרגול #7 עבודה ואנרגיה

תרגול #7 עבודה ואנרגיה תרגול #7 עבודה ואנרגיה בדצמבר 203 רקע תיאורטי עבודה עבודה מכנית המוגדרת בצורה הכללית ביותר באופן הבא: W = W = lf l i x f F dl x i F x dx + y f y i F y dy + z f z i F z dz היא כמות האנרגיה שמושקעת בגוף

Διαβάστε περισσότερα

מערכות חשמל ג' שתי יחידות לימוד )השלמה לחמש יחידות לימוד( )כיתה י"א( הוראות לנבחן

מערכות חשמל ג' שתי יחידות לימוד )השלמה לחמש יחידות לימוד( )כיתה יא( הוראות לנבחן מדינת ישראל סוג הבחינה: בגרות לבתי ספר על יסודיים משרד החינוך מועד הבחינה: קיץ תשס"ח, 2008 סמל השאלון: 845201 א. משך הבחינה: שלוש שעות. נספח: נוסחאון במערכות חשמל מערכות חשמל ג' שתי יחידות לימוד )השלמה

Διαβάστε περισσότερα

מבוא לרשתות - תרגול מס 5 תורת התורים

מבוא לרשתות - תרגול מס 5 תורת התורים מ( מבוא לרשתות - תרגול מס 5 תורת התורים M / M / תאור המערכת: תור שרת שירות פואסוני הגעה פואסונית הערות: במערכת M/M/ יש חוצץ אינסופי ולכן יכולים להיות בה אינסוף לקוחות, כאשר מקבל שירות והשאר ממתינים. קצב

Διαβάστε περισσότερα

משוואות דיפרנציאליות רגילות

משוואות דיפרנציאליות רגילות משוואות דיפרנציאליות רגילות גיא סלומון סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת מתמטיקה באוניברסיטת תל אביב, באוניברסיטה הפתוחה, במכללת שנקר ועוד. שאלות תלמידים וטעויות נפוצות

Διαβάστε περισσότερα

ושל (השטח המקווקו בציור) . g(x) = 4 2x. ו- t x = g(x) f(x) dx

ושל (השטח המקווקו בציור) . g(x) = 4 2x. ו- t x = g(x) f(x) dx פרק 9: חשבון דיפרנציאלי ואינטגרלי O 9 ושל בציור שלפניך מתוארים גרפים של הפרבולה f() = נמצאת על הנקודה המלבן CD מקיים: הישר = 6 C ו- D נמצאות הפרבולה, הנקודה נמצאת על הישר, הנקודות ( t > ) OD = t נתון:

Διαβάστε περισσότερα

ביוכימיה א

ביוכימיה א www.reshefmd.com רשף משולם לימודי ביולוגיה ורפואה reshefm87@gmail.com 054-3318431 בחינת הידע קבלה לתוכנית ה- 4 שנתית ללימודי רפואה ביוכימיה א מבוא לביוכימייה מולקולות החיים פחמימות וסוכרים ליפידים חומצות

Διαβάστε περισσότερα

Vcc. Bead uF 0.1uF 0.1uF

Vcc. Bead uF 0.1uF 0.1uF ריבוי קבלים תוצאות בדיקה מאת: קרלוס גררו. מחלקת בדיקות EMC 1. ריבוי קבלים תוצאות בדיקה: לקחנו מעגל HLXC ובדקנו את סינון המתח על רכיב. HLX מעגל הסינון בנוי משלוש קבלים של, 0.1uF כל קבל מחובר לארבע פיני

Διαβάστε περισσότερα

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון. Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.

Διαβάστε περισσότερα

b 1 b 2 c 0 > c 1 > c 2 רציונל הפתרון: הגדרות: G j b j b j+1 *Q -גודל מנה אופטימלית.

b 1 b 2 c 0 > c 1 > c 2 רציונל הפתרון: הגדרות: G j b j b j+1 *Q -גודל מנה אופטימלית. תרגול - IV מודלים עם הנחה לכמויות הנחה על כל הכמות: המשמעות: בהתאם לגודל המנה, נקבע מחיר ליחידה c, ובמחיר זה נרכשת כל הכמות. TC מבחינה גרפית: b b b תחום תחום תחום c > c > c רציונל הפתרון: לכל תחום מחשבים

Διαβάστε περισσότερα

מעגלים ליניאריים, סיכום הקורס, עמוד 1 מתוך 19 הפתק הסגול. מעגלים ליניארים סיכום הקורס

מעגלים ליניאריים, סיכום הקורס, עמוד 1 מתוך 19 הפתק הסגול.  מעגלים ליניארים סיכום הקורס 4442 מעגלים ליניאריים, סיכום הקורס, עמוד מתוך 9 הפתק הסגול www.technon.co.l מעגלים ליניארים 4442 סיכום הקורס 27 www.technon.co.l אבי בנדל 4442 מעגלים ליניאריים, סיכום הקורס, עמוד 2 מתוך 9 תוכן עניינים

Διαβάστε περισσότερα

פתרון מבחן פיזיקה 5 יח"ל טור א' שדה מגנטי ורמות אנרגיה פרק א שדה מגנטי (100 נקודות)

פתרון מבחן פיזיקה 5 יחל טור א' שדה מגנטי ורמות אנרגיה פרק א שדה מגנטי (100 נקודות) שאלה מספר 1 פתרון מבחן פיזיקה 5 יח"ל טור א' שדה מגנטי ורמות אנרגיה פרק א שדה מגנטי (1 נקודות) על פי כלל יד ימין מדובר בפרוטון: האצבעות מחוץ לדף בכיוון השדה המגנטי, כף היד ימינה בכיוון הכוח ולכן האגודל

Διαβάστε περισσότερα

( ). Var( c ( ) 1 ( ) 1 ( ) P( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) x x N N. U c= m T. . קומבינטוריקה n. 2πσ. ( ax bx c) a 4a אנטרופיה: ( )

( ). Var( c ( ) 1 ( ) 1 ( ) P( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) x x N N. U c= m T. . קומבינטוריקה n. 2πσ. ( ax bx c) a 4a אנטרופיה: ( ) -- דף נוסחאות בפיסיקה תרמית (אוניברסיטת ת"א, ( ω K m ספירת המצבים של מערכת גדולה קומבינטוריקה מספרהאפשרויותלסדר חלקיקיםכאשרלכלאחדm מצביםאפשריים: מספרהאפשרויותלבחור k איבריםשוניםמתוך איברים, כאשרהבחירהללאחשיבותלסדר

Διαβάστε περισσότερα

PDF created with pdffactory trial version

PDF created with pdffactory trial version הקשר בין שדה חשמלי לפוטנציאל חשמלי E נחקור את הקשר, עבור מקרה פרטי, בו יש לנו שדה חשמלי קבוע. נתון שדה חשמלי הקבוע במרחב שגודלו שווה ל. E נסמן שתי נקודות לאורך קו שדה ו המרחק בין הנקודות שווה ל x. המתח

Διαβάστε περισσότερα

הכנה לשאלון , רוב השאלות מבוססות על בחינות הבגרות

הכנה לשאלון , רוב השאלות מבוססות על בחינות הבגרות 1 הכנה לשאלון 043881, רוב השאלות מבוססות על בחינות הבגרות שנת תשע"ז 2017 בעריכת רונית לבקוביץ בעריכת רונית לבקוביץ בהתאם לתוכנית הלימודים 2017 2 תוכן עניינים התא מבנה ופעילות... 3 מאפייני חיים ומבנה התא...

Διαβάστε περισσότερα

69163) C [M] nm 50, 268 M cm

69163) C [M] nm 50, 268 M cm א ב ג סמסטר אביב, תשע"א 11) פיתרון מס' 4: תרגיל 69163 69163) פיסיקלית א' כימיה בליעה והעברה של אור חוק בר-למבר) כללי.1 נתון כי הסטודנט מדד את ההעברה דרך דוגמת החלבון בתוך תא של 1 ס"מ. גרף של העברה T) כתלות

Διαβάστε περισσότερα

שם התלמיד/ה הכיתה שם בית הספר. Page 1 of 18

שם התלמיד/ה הכיתה שם בית הספר. Page 1 of 18 שם התלמיד/ה הכיתה שם בית הספר ה Page of 8 0x = 3x + שאלה פ תרו את המשוואה שלפניכם. x = תשובה: שאלה בבחירות למועצת תלמידים קיבל רן 300 קולות ונעמה קיבלה 500 קולות. מה היחס בין מספר הקולות שקיבל רן למספר

Διαβάστε περισσότερα

נגזר ות צולבות F KK = 0 K MP יריבים אדישים מסייעים MP = = L MP X=F(L,K) שני: L K X =

נגזר ות צולבות F KK = 0 K MP יריבים אדישים מסייעים MP = = L MP X=F(L,K) שני: L K X = 4. < > בניתוח של הטווח הארוך נניח שהפירמה מייצרת מוצר באמצעות שני גורמי יצור משתנים: עבודה ומכונות. נגדיר את פונ קצית הייצור: התפוקה המקסימאלית שניתן לייצור באמצעות צירוף, של תשומות: פונקצית הייצור בטווח

Διαβάστε περισσότερα

שאלה. משקולת שמסתה 2kg = m תלויה במנוחה על חוט שאורכו l, = 1m המחובר לתקרה. )ראו תרשים(

שאלה. משקולת שמסתה 2kg = m תלויה במנוחה על חוט שאורכו l, = 1m המחובר לתקרה. )ראו תרשים( שאלה משקולת שמסתה 2kg = תלויה במנוחה על חוט שאורכו l, = 1 המחובר לתקר )ראו תרשים( מצאו את הכח T סטודנט הזיז את המשקולת בזווית = 10 α מן האנך )נקודה A בתרשים( והרפה, המסה חזרה לנקודה הנמוכה ביותר )נקודה

Διαβάστε περισσότερα

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשעד פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה

Διαβάστε περισσότερα

בסל A רמת התועלת היא: ) - השקה: שיפוע קו תקציב=שיפוע עקומת אדישות. P x P y. U y P y A: 10>6 B: 9>7 A: 5>3 B: 4>3 C: 3=3 C: 8=8 תנאי שני : מגבלת התקציב

בסל A רמת התועלת היא: ) - השקה: שיפוע קו תקציב=שיפוע עקומת אדישות. P x P y. U y P y A: 10>6 B: 9>7 A: 5>3 B: 4>3 C: 3=3 C: 8=8 תנאי שני : מגבלת התקציב תנאי ראשון - השקה: שיפוע קו תקציב=שיפוע עקומת אדישות 1) MRS = = שיווי המשקל של הצרכן - מציאת הסל האופטימלי = (, בסל רמת התועלת היא: ) = התועלת השולית של השקעת שקל (תועלת שולית של הכסף) שווה בין המוצרים

Διαβάστε περισσότερα

רחת 3 קרפ ( שוקיבה תמוקע)שוקיבה תיצקנופ

רחת 3 קרפ ( שוקיבה תמוקע)שוקיבה תיצקנופ - 41 - פרק ג' התנהגות צרכן פונקצית הביקוש(עקומת הביקוש ( - 42 - פרק 3: תחרות משוכללת: התנהגות צרכן מתארת את הקשר שבין כמות מבוקשת לבין מחיר השוק. שיפועה השלילי של עקומת הביקוש ממחיש את הקשר ההפוך הקיים

Διαβάστε περισσότερα

קיום ויחידות פתרונות למשוואות דיפרנציאליות

קיום ויחידות פתרונות למשוואות דיפרנציאליות קיום ויחידות פתרונות למשוואות דיפרנציאליות 1 מוטיבציה למשפט הקיום והיחידות אנו יודעים לפתור משוואות דיפרנציאליות ממחלקות מסוימות, כמו משוואות פרידות או משוואות לינאריות. עם זאת, קל לכתוב משוואה דיפרנציאלית

Διαβάστε περισσότερα

הקדמה כללית: בקצרה על קצבי ריאקציות וכו' (בשל שינוי סדר התרגולים). שיטות ניסיוניות למדידת קצב של ריאקציות (דגש על ניטור לחץ, מדידת בליעה וטיטרציה).

הקדמה כללית: בקצרה על קצבי ריאקציות וכו' (בשל שינוי סדר התרגולים). שיטות ניסיוניות למדידת קצב של ריאקציות (דגש על ניטור לחץ, מדידת בליעה וטיטרציה). כימיה פיסיקלית א' תרגול מס' 4 6916) נושאי התרגול הקדמה כללית: בקצרה על קצבי ריאקציות וכו' בשל שינוי סדר התרגולים). שיטות ניסיוניות למדידת קצב של ריאקציות דגש על ניטור לחץ, מדידת בליעה וטיטרציה)..1.2 1.

Διαβάστε περισσότερα

שעור מס' 10 תערובות פשוטות Atkins תערובות פשוטות כימיה פיסיקלית סילבוס קורס

שעור מס' 10 תערובות פשוטות Atkins תערובות פשוטות כימיה פיסיקלית סילבוס קורס תערובות פשוטות כימיה פיסיקלית - 69167 דני פורת ד"ר Tel: -6586948 e-mail: orath@chem.ch.hui.ac.il Office: Los ngeles 7 Course book: Physical Chemistry P. tkins & J. de Paula (7 th ed) Course site: htt://chem.ch.hui.ac.il/surface-asscher/elad/daniclass.html

Διαβάστε περισσότερα

כימיה פיסיקלית א' (69163) תרגול מס'

כימיה פיסיקלית א' (69163) תרגול מס' תרגול מס' 3 מתרגלים: רועי עשור ואמיר ונד כימיה פיסיקלית א' סמסטר אביב, תשע"א () (6963) נושאי התרגול משוואות קצב כלליות לריאקציות כימיות משמעות והגדרות. ריאקציות אלמנטאריות מסדרים ו- (בהרחבה; סדר בבית).

Διαβάστε περισσότερα

שעור מס' 10 תערובות פשוטות Atkins גדלים מול ריים חלקיים תערובות פשוטות כימיה פיסיקלית גדלים מול ריים חלקיים סילבוס קורס נפח מולרי חלקי

שעור מס' 10 תערובות פשוטות Atkins גדלים מול ריים חלקיים תערובות פשוטות כימיה פיסיקלית גדלים מול ריים חלקיים סילבוס קורס נפח מולרי חלקי 4 תערובות פשוטות כימיה פיסיקלית - 69167 דני פורת ד"ר Tel: -6586948 e-mil: orth@chem.ch.hui.c.il Office: Los ngeles 7 Course book: Physicl Chemistry P. tkins & J. de Pul (7 th ed Course site: htt://chem.ch.hui.c.il/surfce-sscher/eld/dniclss.html

Διαβάστε περισσότερα

הרצאה 7 טרנזיסטור ביפולרי BJT

הרצאה 7 טרנזיסטור ביפולרי BJT הרצאה 7 טרנזיסטור ביפולרי JT תוכן עניינים: 1. טרנזיסטור ביפולרי :JT מבנה, זרם, תחומי הפעולה..2 מודל: S MOLL (אברסמול). 3. תחומי הפעולה של הטרנזיסטור..1 טרנזיסטור ביפולרי.JT מבנה: PNP NPN P N N P P N PNP

Διαβάστε περισσότερα

MULTI INVERTER 1:2-1:5 SUPER MULTI INVERTER 1:8-1:9

MULTI INVERTER 1:2-1:5 SUPER MULTI INVERTER 1:8-1:9 MULTI INVERTER 1:2 1:5 SUPER MULTI INVERTER 1:8 1:9 MULTI i 1:2 ~ 1:5 Multi i 1 : 5 Multi i 1 : 3 / 1 : 4 יחידות חוץ Multi i 1 : 2 יחידות חוץ Multi 1:5 Multi 1:4 Multi 1:3 Multi 1:2 45,000 28,497 25, 18,000

Διαβάστε περισσότερα

רקע תיאורטי פיסיקה 1

רקע תיאורטי פיסיקה 1 רקע תיאורטי פיסיקה 1 30 ביוני 2013 הערה: יתכן וישנן נוסחאות שנלמדו אך אינן מופיעות פה. הרשימות מטה הן ריכוז של התרגולים בקורס ואין לייחס אליהם כאל מקור רפרנס יחיד בקורס (כל הזכויות שמורות לשרית נגר). dx(t)

Διαβάστε περισσότερα

מערכות מיזוג אוויר בטכנולוגית אינוורטר

מערכות מיזוג אוויר בטכנולוגית אינוורטר מערכות מיזוג אוויר בטכנולוגית אינוורטר למה אינוורטר? הקשר בין טמפרטורה חיצונית לעומס Load/Capacity Capacity (Inverter at full speed) Load Unit Capacity (fixed speed) Missing Capacity Cycling Capacity (Inverter

Διαβάστε περισσότερα

גלים מכניים גלים אלקטרומגנטיים משוואת הגלים גלים עומדים ו.

גלים מכניים גלים אלקטרומגנטיים משוואת הגלים גלים עומדים ו. א. ב. ג. ד. גלים גלים מכניים גלים אלקטרומגנטיים משוואת הגלים ה. מהירות פאזה, מהירות חבורה גלים עומדים ו. גלים מכניים בסביבה אלסטית גלים הם הזזה של חלק של סביבה אלסטית ממצב שיווי-משקל. הזזה זו גורמת לתנודות

Διαβάστε περισσότερα

אוניברסיטת בן-גוריון בנגב הפקולטה למדעי ההנדסה. DC Motor speed Control בקרת מהירות

אוניברסיטת בן-גוריון בנגב הפקולטה למדעי ההנדסה. DC Motor speed Control בקרת מהירות אוניברסיטת בן-גוריון בנגב הפקולטה למדעי ההנדסה DC Motor speed Control בקרת מהירות מבוא ומטרת המעבדה להתנסות בתכנון ומימוש של מערכות בקרה. להתנסות בעבודה עם ה- Simulink ובכלים המאפשרים פיתוח מהיר של אב

Διαβάστε περισσότερα

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p

Διαβάστε περισσότερα

משפטי בקרה ולולאות שעור מס. 3 כל הזכויות שמורות דר' דרור טובי המרכז האוניברסיטאי אריאל

משפטי בקרה ולולאות שעור מס. 3 כל הזכויות שמורות דר' דרור טובי המרכז האוניברסיטאי אריאל משפטי בקרה ולולאות שעור מס. 3 דרור טובי דר' 1 כל הזכויות שמורות דר' דרור טובי המרכז האוניברסיטאי אריאל - הקדמה משפט התנאי if המשימה: ברצוננו לכתוב תוכנית המקבלת שני מספרים בסדר כל שהוא ולהדפיס אותם בסדר

Διαβάστε περισσότερα

ÍÈ Ó ÈÊÎ Ó כניסת אוויר קטלוג למתקין mm. 20mm TADIRAN מבט חזית מבט צד ימין

ÍÈ Ó ÈÊÎ Ó כניסת אוויר קטלוג למתקין mm. 20mm TADIRAN מבט חזית מבט צד ימין ÍÈ Ó ÈÊÎ Ó Ó S כניסת אוויר D L N קטלוג למתקין 11 6 B N מבט צד ימין מבט חזית TDIRN מקרא UTO RESTRT חזרה אוטומטית למצב פעולה אחרון במצב של הפסקת חשמל, שעון שבת או טיימר. UTO RESTRT פונקציית שבת הפעלת מזגן

Διαβάστε περισσότερα

מתמטיקה )שאלון שני לנבחנים בתכנית ניסוי, 5 יחידות לימוד( 1 מספרים מרוכבים 3#2 3 3

מתמטיקה )שאלון שני לנבחנים בתכנית ניסוי, 5 יחידות לימוד( 1 מספרים מרוכבים 3#2 3 3 סוג הבחינה: בגרות לבתי ספר על יסודיים מדינת ישראל מועד הבחינה: חורף תשע"ב, 202 משרד החינוך מספר השאלון: 035807 דפי נוסחאות ל 5 יחידות לימוד נספח: א. משך הבחינה: שעתיים. מתמטיקה 5 יחידות לימוד שאלון שני

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.

תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשעא, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן. בB בB תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: 035804 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 מכונית נסעה מעיר A לעיר B על כביש ראשי

Διαβάστε περισσότερα

gcd 24,15 = 3 3 =

gcd 24,15 = 3 3 = מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =

Διαβάστε περισσότερα

dr qe dt m dr q d r = ω ˆ =ω a r r r dx q q 0 dt m m dr dt dx dy dz dt dt dt dt dt dt dr dv dt dt q q dt dt c= cm/ = G ω ω ω = v mv

dr qe dt m dr q d r = ω ˆ =ω a r r r dx q q 0 dt m m dr dt dx dy dz dt dt dt dt dt dt dr dv dt dt q q dt dt c= cm/ = G ω ω ω = v mv 8 סיכום /נוסחאון למבחן בפיזיקה מ //. השימוש בנוסחאון זה הוא באחריות הנבחן בלבד. בהצלחה! / סיכום למבחן בפיזיקה מ (47) // (חורף תשס"ב) ˆ yˆ ˆ y y ( C) ( ) C ( C) ( C) ( ) C C Cˆ sin(ˆ ) ˆ X Z Y Z X Y Y X

Διαβάστε περισσότερα

קורס: מבוא למיקרו כלכלה שיעור מס. 17 נושא: גמישויות מיוחדות ושיווי משקל בשוק למוצר יחיד

קורס: מבוא למיקרו כלכלה שיעור מס. 17 נושא: גמישויות מיוחדות ושיווי משקל בשוק למוצר יחיד גמישות המחיר ביחס לכמות= X/ Px * Px /X גמישות קשתית= X(1)+X(2) X/ Px * Px(1)+Px(2)/ מקרים מיוחדים של גמישות אם X שווה ל- 0 הגמישות גם כן שווה ל- 0. זהו מצב של ביקוש בלתי גמיש לחלוטין או ביקוש קשיח לחלוטין.

Διαβάστε περισσότερα

תורת התורים תור שרת יחיד, תורים במקביל ובטור, רשתות תורים

תורת התורים תור שרת יחיד, תורים במקביל ובטור, רשתות תורים הרצאה : תור תורת התורים תור שרת יחיד, תורים במקביל ובטור, רשתות תורים ) W t n t n : M/G/ נחשב את זמן השהיה הממוצע בתור צרכן שמגיע ברגע רואה לפניו את נניח שהשרות הוא שם אחר הוא FIFO first in first out אז

Διαβάστε περισσότερα

25 ג. משטח 4 מקזז כיוון ומקזז גובה. ד. הגה גובה זז באופן זהה בשני צידי הגוף. מאזנות זזות בצורה הפוכה משני צידי הגוף.

25 ג. משטח 4 מקזז כיוון ומקזז גובה. ד. הגה גובה זז באופן זהה בשני צידי הגוף. מאזנות זזות בצורה הפוכה משני צידי הגוף. - - דגם תשובות לשאלון מערכות תעופה ב', סמל 853, קיץ תשע"א מייצב גובה משטח א. מייצב כיוון משטח 2 ב. משטח 3 הגה כיוון שולט על ציר הסבסוב. משטח 5 הגה גובה שולט על ציר העלרוד. ג. משטח 4 מקזז כיוון ומקזז גובה.

Διαβάστε περισσότερα

m 3kg משוחררת מנקודה A של משור משופע חלק בעל אורך

m 3kg משוחררת מנקודה A של משור משופע חלק בעל אורך .v A עבודה: ( גוף נזרק מגובה h 8m במהירות אופקית שווה ל- 7m/s א. מהי העבודה הנעשית על ידי כוח הכובד מנקודה A לנקודה B? השתמש במשפט עבודה - אנרגיה קינטית כדי לחשב את גודל מהירות הגוף בנקודה B. AB l m וזווית.

Διαβάστε περισσότερα

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin( א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π

Διαβάστε περισσότερα

לחשיבות היחידות: מטוס שהתרסק בטרם סוף טיסתו עקב מילואו בדלק ביחידות של ק"ג ולא פאונדים Mars Climate Orbiter

לחשיבות היחידות: מטוס שהתרסק בטרם סוף טיסתו עקב מילואו בדלק ביחידות של קג ולא פאונדים Mars Climate Orbiter מטרות התרגול (69163) תרגול מס' סמסטר אביב, תשע"א (011) חלק א' יחידות: 1 רענון נושא היחידות בתחומי הפיסיקה והכימיה אזכור של יחידות חשובות ושימושיות חלק ב' משוואת הגז האידיאלי וחוק דלטון חלק ג' ספקטרופוטומטריה

Διαβάστε περισσότερα

פרק 6: מסכמים, בוררים, מפענחים

פרק 6: מסכמים, בוררים, מפענחים פרק 6: מסכמים, בוררים, מפענחים דוגמת חיבור שני מספרים בינריים נשא (carry) + + מסכם בינרי מלא (FA) Full-Adder מבצע את החישוב עבור זוג סיביות: A מחוברים B נשא כניסה FA o סכום נשא יציאה טבלת האמת של FA [out

Διαβάστε περισσότερα

תרגול פעולות מומצאות 3

תרגול פעולות מומצאות 3 תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה

Διαβάστε περισσότερα